
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Yanev, George]
On: 12 February 2011
Access details: Access Details: [subscription number 933399554]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Statistics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713682269

Characterizations of Student's t-distribution via regressions of order
statistics
George P. Yaneva; M. Ahsanullahb

a Mathematics Department, The University of Texas - Pan American, Edinburg, TX, USA b

Management Sciences Department, Rider University, Lawrenceville, NJ, USA

First published on: 12 February 2011

To cite this Article Yanev, George P. and Ahsanullah, M.(2011) 'Characterizations of Student's t-distribution via
regressions of order statistics', Statistics,, First published on: 12 February 2011 (iFirst)
To link to this Article: DOI: 10.1080/02331888.2010.535904
URL: http://dx.doi.org/10.1080/02331888.2010.535904

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713682269
http://dx.doi.org/10.1080/02331888.2010.535904
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Statistics, iFirst, 2011, 1–7

Characterizations of Student’s t-distribution via regressions
of order statistics
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Utilizing regression properties of order statistics, we characterize a family of distributions introduced by
Akhundov et al. [New characterizations by properties of midrange and related statistics, Commun. Stat.
Theory Methods 33(12) (2004), pp. 3133–3143], which includes the t-distribution with two degrees of
freedom as one of its members. Then we extend this characterization result to t-distribution with more
than two degrees of freedom.
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1. Discussion of the results

The Student’s t-distribution is widely used in statistical inferences when the population standard
deviation is unknown and is substituted by its estimate from the sample. Recently, Student’s
t-distribution was also considered in financial modelling by Ferguson and Platen [1] and as a
pedagogical tool by Jones [2]. The probability density function (pdf) of the t-distribution with
ν degrees of freedom (tν-distribution) is given for −∞ < x < ∞ and ν = 1, 2, . . . by

fν(x) = cν

(
1 + x2

ν

)−(ν+1)/2

where cν = �((ν + 1)/2)

�(ν/2)
√

πν
(1)

and �(x) is the gamma function.
The vast majority of characterization results for univariate continuous distributions based on

ordered random variables is concentrated to exponential and uniform families. It was not until
recently, within the last seven to eight years, that some characterizations were obtained for tν-
distribution with ν = 2 and ν = 3. In this note, we communicate generalizations of these recent
results for tν-distribution when ν ≥ 2. Let X, X1, X2, . . . , Xn for n ≥ 3 be independent ran-
dom variables with common cumulative distribution function (cdf) F(x). Assume that F(x) is
absolute continuous with respect to the Lebesgue measure. Let X1:3 ≤ X2:3 ≤ · · · ≤ Xn:n be the
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2 G.P. Yanev and M. Ahsanullah

corresponding order statistics. Nevzorov et al. [3] (see also [4]) and Akhundov and Nevzorov [5]
proved characterizations for the tν-distribution when ν = 2 and ν = 3, respectively, assuming, in
addition, n = 3. Here we extend these results to the general case of any ν ≥ 2 and any n ≥ 3.

Let Q(x) be the quantile function of a random variable with cdf F(x), i.e. F(Q(x)) = x for
0 < x < 1. Akhundov et al. [6] proved that for 0 < λ < 1, the relation

E[λX1:3 + (1 − λ)X3:3 | X2:3 = x] = x (2)

characterizes a family of probability distributions with quantile function

Qλ(x) = c(x − λ)

λ(1 − λ)(1 − x)λx1−λ
+ d, 0 < x < 1, (3)

where 0 < c < ∞ and −∞ < d < ∞. Let us call this family of distributions – Q-family.

Theorem 1 (Q-family) Assume that E|X| < ∞ and n ≥ 3 is a positive integer. The random
variable X belongs to the Q-family if and only if for some 2 ≤ k ≤ n − 1 and some 0 < λ < 1

λE

[
1

k − 1

k−1∑
i=1

(Xk:n − Xi:n)
∣∣∣Xk:n = x

]

= (1 − λ)E

⎡
⎣ 1

n − k

n∑
j=k+1

(Xj :n − Xk:n)
∣∣∣Xk:n = x

⎤
⎦. (4)

Note that Equation (4) can be written as

λE

⎡
⎣ 1

k − 1

k−1∑
j=1

Xj :n
∣∣∣Xk:n = x

⎤
⎦ + (1 − λ)E

⎡
⎣ 1

n − k

n∑
j=k+1

Xj :n
∣∣∣Xk:n = x

⎤
⎦ = x. (5)

Clearly for n = 3 and k = 2 Equation (5) reduces to Equation (2). It is also worth mentioning
here that, as Balakrishnan and Akhundov [7] reported, the Q-family, for different values of λ,
approximates well a number of common distributions including Tukey lambda, Cauchy, and
Gumbel (for maxima).

Notice that t2-distribution belongs to the Q-family, having quantile function [2]

Q1/2(x) = 21/2(x − 1/2)

x1/2(1 − x)1/2
, 0 < x < 1.

Nevzorov et al. [3] proved that if E|X| < ∞ then X follows t2-distribution if and only if

E[X2:3 − X1:3 | X2:3 = x] = E[X3:3 − X2:3 | X2:3 = x]. (6)

This also follows directly from Equation (2) with λ = 1/2. Recall that the cdf of t2-distribution
[2] is

F2(x) = 1

2

(
1 + x√

1 + x2

)
.

Setting λ = 1/2 in Equation (4), we obtain the following corollary of Theorem 1.
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Statistics 3

Corollary 1 (t2-distribution) Assume that E|X| < ∞ and n ≥ 3 is a positive integer. Then

F(x) = F2

(
x − μ

σ

)
for − ∞ < μ < ∞, σ > 0, (7)

if and only if for some 2 ≤ k ≤ n − 1

E

[
1

k − 1

k−1∑
i=1

(Xk:n − Xi:n)
∣∣∣Xk:n = x

]
= E

⎡
⎣ 1

n − k

n∑
j=k+1

(Xj :n − Xk:n)
∣∣∣Xk:n = x

⎤
⎦. (8)

Relation (8) can be interpreted as follows. Given the value of Xk:n, the average deviation from
Xk:n to the observations less than it equals the average deviation from the observations greater
than Xk:n to it.

Remark 1 (i) Notice that Equation (8) reduces to Equation (6) when n = 3 and k = 2. (ii) Let
us set n = 2r + 1 and k = r + 1 for an integer r ≥ 1. Let M2r+1 = Xr+1:2r+1 be the median of
the sample X1, X2, . . . , X2r+1. Then Equation (8) implies

E

[
r∑

i=1

(M2r+1 − Xi:2r+1)

∣∣∣M2r+1 = x

]
= E

⎡
⎣ 2r+1∑

j=r+2

(Xj :2r+1 − M2r+1)

∣∣∣M2r+1 = x

⎤
⎦.

If, in addition, X̄2r+1 = ∑2r+1
i=1 Xi/(2r + 1) is the sample mean, then Equation (8) reduces to

Nevzorov et al. [3] t2-distribution characterization relation

E[X̄2r+1 | M2r+1 = x] = x.

Let us now turn to the case of tν-distribution with ν ≥ 3. Akhundov and Nevzorov [5] extended
Equation (6) to a characterization of t3-distribution as follows. If EX2 < ∞ then X follows
t3-distribution if and only if

E[(X2:3 − X1:3)2 | X2:3 = x] = E[(X3:3 − X2:3)2 | X2:3 = x]. (9)

We generalize this in two directions: (i) characterizing tν-distribution with ν ≥ 3 and
(ii) considering a sample of size n ≥ 3. The following result holds.

Theorem 2 (tν-distribution) Assume EX2 < ∞. Let n ≥ 3 and ν ≥ 3 be positive integers. Then

F(x) = Fν

(
x − μ

σ

)
for − ∞ < μ < ∞, σ > 0, (10)

where Fν(x) is the tν-distribution cdf if and only if for some 2 ≤ k ≤ n − 1

E

[
1

k − 1

k−1∑
i=1

(
ν − 1

2
Xk:n − (ν − 2)Xi:n

)2 ∣∣∣Xk:n = x

]

= E

⎡
⎣ 1

n − k

n∑
j=k+1

(
(ν − 2)Xj :n − ν − 1

2
Xk:n

)2 ∣∣∣Xk:n = x

⎤
⎦. (11)
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4 G.P. Yanev and M. Ahsanullah

Remark 2 (i) Notice that if n = 3, k = 2, and ν = 3, then Equation (11) reduces to Equation (9).
(ii) Let us set ν = 3, n = 2r + 1 and k = r + 1 for an integer r ≥ 1. If, as before, M2r+1 =
Xr+1:2r+1 is the median of the sample X1, X2, . . . , X2r+1, then Equation (11) implies the following
equality between the sum of squares of the deviations from the sample median

E

[
r∑

i=1

(M2r+1 − Xi:2r+1)
2
∣∣∣M2r+1 = x

]
= E

⎡
⎣ 2r+1∑

j=r+2

(
Xj :2r+1 − M2r+1

)2
∣∣∣M2r+1 = x

⎤
⎦.

2. Proofs

To prove our results, we need the following two lemmas.

Lemma 1 [7] The cdf F(x) of a random variable X with quintile function (3) is the only
continuous cdf solution of the equation

[F(x)]2−λ[1 − F(x)]1+λ = cF ′(x), c > 0. (12)

Lemma 2 Let r ≥ 1 and n ≥ 2 be integers. Then

1

k − 1

k−1∑
i=1

E
[
Xr

i:n | Xk:n = x
] = 1

F(x)

∫ x

−∞
t r dF(t), 2 ≤ k ≤ n;

1

n − k

n∑
j=k+1

E
[
Xr

j :n | Xk:n = x
] = 1

1 − F(x)

∫ ∞

x

t r dF(t), 1 ≤ k ≤ n − 1.

(13)

Proof Using the standard formulas for the conditional density of Xj :n given Xk:n = x (j < k)

[8, Theorem 1.1.1], we obtain for r ≥ 1

1

k − 1

k−1∑
j=1

E[Xr
j :n | Xk:n = x]

= 1

(k − 1)

(k − 1)

[F(x)]k−1

k−1∑
j=1

(
k − 2
j − 1

) ∫ x

−∞
[F(t)]j−1[F(x) − F(t)]k−1−j t r dF(t)

= 1

[F(x)]k−1

k−2∑
i=0

(
k − 2

i

) ∫ x

−∞
[F(t)]i[F(x) − F(t)]k−2−i t r dF(t)

= 1

F(x)

∫ x

−∞
t r dF(t).

This verifies (13). The second relation in the lemma’s statement can be proved similarly. �
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Statistics 5

2.1. Proof of Theorem 1

First, we show that Equation (4) implies Equation (3). Applying Lemma 2, for the left-hand side
of Equation (5), we obtain

λ

k − 1

k−1∑
j=1

E[Xj :n | Xk:n = x] + 1 − λ

n − k

n∑
j=k+1

E[Xj :n | Xk:n = x]

= λ

F(x)

∫ x

−∞
t dF(t) + 1 − λ

1 − F(x)

∫ ∞

x

t dF(t). (14)

Further, since E|X| < ∞, we have

lim
x→−∞ xF(x) = 0 and lim

x→∞ x(1 − F(x)) = 0. (15)

Therefore, integrating by parts, we obtain

λ

F(x)

∫ x

−∞
t dF(t) + 1 − λ

1 − F(x)

∫ ∞

x

t dF(t) = x − λ

F(x)

∫ x

−∞
F(t)dt

+ 1 − λ

1 − F(x)

∫ ∞

x

(1 − F(t))dt. (16)

Thus, from Equations (14) and (16), it follows that Equation (4) is equivalent to

λ(1 − F(x))

∫ x

−∞
F(t)dt = (1 − λ)F (x)

∫ ∞

x

(1 − F(t))dt.

The last equation can be written as

− λ

1 − λ

∫ x

−∞
F(t)dt

d

dx

[∫ ∞

x

(1 − F(t))dt

]
=

∫ ∞

x

(1 − F(t))dt
d

dx

[∫ x

−∞
F(t)dt

]
,

which leads to ∫ x

−∞
F(t)dt = c

(∫ ∞

x

(1 − F(t))dt

)−λ/(1−λ)

c > 0.

Differentiating both sides with respect to x, we obtain

∫ ∞

x

(1 − F(t))dt = c1

(
1

F(x)
− 1

)1−λ

, c1 > 0.

Differentiating one more time, we have

[F(x)]2−λ[1 − F(x)]1+λ = c2F
′(x), c2 > 0, (17)

which is Equation (12). Referring to Lemma 1 we see that Equation (4) implies Equation (3).
To complete the proof of the theorem, it remains to verify that F(x) with quantile function (3)

satisfies Equation (4). Differentiating Equation (3) with respect to x we obtain

Q′
λ(x) = c(1 − x)−(1+λ)x−(2−λ) c > 0.
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6 G.P. Yanev and M. Ahsanullah

On the other hand, since F(Qλ(x)) = x, we have Q′
λ(x) = [F ′(Qλ(x))]−1. (Note that the

right-hand side is clearly differentiable, and thus so is the left-hand side.) Therefore,

(1 − x)1+λx2−λ = cF ′(Qλ(x)),

which is equivalent to Equation (17) and thus to Equation (4). This completes the proof.

2.2. Proof of Theorem 2

Notice that Equation (11) can be written as

(ν − 1)x

⎡
⎣ 1

n − k

n∑
j=k+1

E[Xj :n | Xk:n = x] − 1

k − 1

k−1∑
j=1

E[Xj :n | Xk:n = x]
⎤
⎦

= (ν − 2)

⎡
⎣ 1

n − k

n∑
j=k+1

E[X2
j :n | Xk:n = x] − 1

k − 1

k−1∑
j=1

E[X2
j :n | Xk:n = x]

⎤
⎦.

Referring to Lemma 2 with r = 1 and r = 2, we see that this is equivalent to

(ν − 1)x

[
1

1 − F(x)

∫ ∞

x

t dF(t) − 1

F(x)

∫ x

−∞
t dF(t)

]

= (ν − 2)

[
1

1 − F(x)

∫ ∞

x

t2 dF(t) − 1

F(x)

∫ x

−∞
t2 dF(t)

]
. (18)

Let us assume that EX = 0 and EX2 = 1. Hence,∫ ∞

x

t dF(t) = −
∫ x

−∞
t dF(t) and

∫ ∞

x

t2 dF(t) = 1 −
∫ x

−∞
t2 dF(t)

and thus Equation (18) is equivalent to

−(ν − 1)x

(
1

1 − F(x)
+ 1

F(x)

) ∫ x

−∞
t dF(t) = ν − 2

1 − F(x)
− (ν − 2)

(
1

1 − F(x)
+ 1

F(x)

)

×
∫ x

−∞
t2 dF(t)

Multiplying the above equation by F(x)[1 − F(x)], we find

−(ν − 1)x

∫ x

−∞
t dF(t) = (ν − 2)

[
F(x) −

∫ x

−∞
t2 dF(t)

]
. (19)

Differentiating both sides with respect to x, we obtain

−(ν − 1)

∫ x

−∞
t dF(t) = f (x)(x2 + ν − 2).

Since the left-hand side of the above equation is differentiable, we have that f ′(x) exists.
Differentiating both sides with respect to x, we find

f ′(x)

f (x)
= −ν + 1

ν − 2

x

1 + x2/(ν − 2)
.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
n
e
v
,
 
G
e
o
r
g
e
]
 
A
t
:
 
1
5
:
3
5
 
1
2
 
F
e
b
r
u
a
r
y
 
2
0
1
1



Statistics 7

Integrating both sides and making use of the fact that f (x) is a pdf, we obtain

f (x) = c

(
1 + x2

ν − 2

)−(ν+1)/2

where c = �((ν + 1)/2)

�(ν/2)
√

(ν − 2)π
. (20)

It is not difficult to see that if a random variable Z has the pdf (20), then

X = Z

√
ν

ν − 2

follows tν-distribution, i.e. its pdf is given by Equation (1). Thus, we have proved that Equation (11)
implies Equation (10) when μ = 0 and σ 2 = 1. The result now follows in the general case by
considering the linear transformation Y = σX + μ.

To complete the proof, we need to verify that Equation (11) holds when X has a cdf given by
Equation (10). If X has pdf (1) (i.e. cdf (10)), then we define

Z = X

√
ν − 2

ν
,

which has pdf (20). Now, it is not difficult to verify that Equation (20) satisfies Equation (19),
which in turn is equivalent to Equation (11). The proof is complete.

References

[1] K. Ferguson and E. Platen, On the distributional characterization of daily log-returns of a world stock index, Appl.
Math. Finance 13(1) (2006), pp. 19–38.

[2] M.C. Jones, Student’s simplest distribution, Statististician 51(1) (2002), pp. 41–49.
[3] V.B. Nevzorov, N. Balakrishnan, and M.Ahsanullah, Simple characterizations of Student’s t2-distribution, Statistician

52(3) (2003), pp. 395–400.
[4] V.B. Nevzorov, On a property of Student’s distribution with two degrees of freedom, Zap. Nauchn. Sem. POMI, 294

(2002), pp. 148–157 (in Russian). (English Translation: J. Math. Sci. 127(1) (2005), pp. 1757–1762.)
[5] I. Akhundov and V.B. Nevzorov, A simple characterization of Student’s t3 distribution, Stats. Probab. Lett. 80(5–6)

(2010), pp. 293–295.
[6] I.S. Akhundov, N. Balakrishnan, and V.B. Nevzorov, New characterizations by properties of midrange and related

statistics, Commun. Stat. Theory Methods 33(12) (2004), pp. 3133–3143.
[7] N. Balakrishnan and I. Akhundov, A characterization by linearity of the regression function based on order statistics,

Stat. Probab. Lett. 63(4) (2003), pp. 435–440.
[8] M. Ahsanullah and V.B. Nevzorov, Ordered Random Variables, NOVA Sci. Publ., Huntington, NY, 2001.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
n
e
v
,
 
G
e
o
r
g
e
]
 
A
t
:
 
1
5
:
3
5
 
1
2
 
F
e
b
r
u
a
r
y
 
2
0
1
1


